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Abstract-In biological wastewat~ treatment plants the biomass is separated from the treated wastewater in the se- 
condary settler; thus, effident operation of the secondary settler is crucial to achieving satisfactory effluent quality in 
the wastewater treatmealt process (WWTP). hi the present work, system identification and soil-computing techniques 
were used to fommlate a model for predicting the solid volume index (SVO and dassi.ficafion of the sludge bulking 
phenomenon in the settler. An adaptive lime series model was applied to predict the SVI of the secondmy settler, this 
modal uses the recursive least square (P,_LS) method to update the model parameters. The method for classifying the 
current state of the secondary settler is based on the strong con'd ation that was observed between the settler state and 
the values of the lime series model patametem, which enabled the time series model parameters to be used as effective 
features for monitoring the secandary settlei: To dasfify the current state of the secondary settler, a neural network 
(NN) was used to classify the adaptive time series model l~raneters, where a hybrid Genetic Algorithm (GA) was 
used to decide the number of hidden nodes of the NN classifier: Application of the proposed method to a full-scale 
WWTP demonstrated the utility of the method for simultaneously predicting the SVI value of the secondary settler 
and dassifying the current state of the settler. 

Key words: Autoq~egressive Exogenous (ARX) Model, Bulking, C~n~c Al~ritlzn (GA), Neural Network (NN) Classffier, 
Recursive Least Squ~e (P,.LS) Method, Solid Volume Index (SVI) 
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Increasingly m'ingent envirotmlental regul~ons demaud ongo- " ~ I ~ l ~  
ing hnpmvenlents in the quality of  the effluent tl-om wa~ewaer 
tteammlt plants. Achieving better effluent quality requires hnpmved 
modeling aid control ofplaut performance. The fit~ step in any 
proce~Jre aimed at reducing the pollutalt level hi effluent fi~om the 
biologic~d wastewoter tmamlent process (WWTP) should be to mod- 
el and analyze the current state of each unit of  the WWTP. The re- 
covery of the WWTP firm a 'bad '  stme to a 'notmal '  state is slow; 
hence, good modeling and s~tus classification in the biological pro- 
cess are crucial to the process efficiency because they allow correc- 
tive action to be taken well before the onset o fa  dmgerous situation 
[Olsson aid Chapman, 1988; Hasselblad et al., 1996; Teppola et 
at, 1997, 1999, Lee et aL, 1998; Rosen aid Olsson, 1998; Van Don- 
gen et al., 1998; Bang et aL, 2001; Choi et at, 2001; Yoo et at, 2000, 
2001, 2002]. 

The activated sludge process (ASP) is the most extensively used 
process in wastewater Wea~nent plaits, hi the ASP, wastewater con- 
t~fining ovgunic ma ta ;  suspended solids, aid nu~ents enters an aer- 
ated talk where it is mixed with biological floc paticles The mix- 
ture is held in the tank for apredetemmed contact fine, atier which 
it is discharged into a settler that separates the suspended biomass 
fi'om the treated water Most of the biomass is recinmlated to the 
aaaticn tank, aid a mlall amount is pinged daily (Fig. 1). The ASP 
is a complex biological process that is difficult to fully unda~and 
aid tha~efore difficult to operate md  conlrol. Both the quantity and 
quality of  the in.flow v a y  with time. In addition, file systenl con- 
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Fig. 1. A basic aclivated sludge process ~ith .an aerated tank and 
a settler. 
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tains a living catalyst (the microorganisms), and the mia~oorgauism 
population varies over time both in quantity and in the relative pop- 
ulations of d i f f a ~  spedes Knowledge about ttae process is sc~ve 
becmse the few available on-line malyzas are mlreliable, and mo~ 
existing data related to the process is subjective and camot be numer- 
ically quantified. The majority of  the problems associated with poor 
effluent quality fi'onl the ASP result fi~om the inability of  the se- 
condary settler to efficiently remove the suspended bionlass fi~n 
the ~a-eated water. When the bionlass is heavily colonized by long 
filamentous bacteria, which hold the flocs apart, sludge settling is 
hindered and the solid vohmle index (SVI) increases This phe- 
nonlenon is referred to as bulking [Belanche et al., 2000]. 

Sludge buiking is pethaps the most connnon cause of ASP fail- 
ures (i.e., exceeding the pemfitted discharge levels). It has been es- 
timated, for example, that ova" 50% of the trealment plants in the 
world regularly experience bulking conditions Buiking slows the 
settling in the settler and, as a consequence, solids in these condi- 
tions are more likely to escape the sepa'ation unit. Recent efl'orts to 
undei~and the factors that lead to bulking have relied primarily on 
experhnental observation of the bacterial species involved. Uncer- 
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tainty rega-cling the factors that trigger bactelial growth ks a major 
obstacle to the elucidation of the problem. However, the factors caus- 
ing the bacterial growth hm~e been established only in a few cases, 
and even in these cases the ext:ez-]mental results are open to con- 
tradictory interpretations. As a res~flt, no models have been estab- 
lished for the analysis and prediction of bulking conditiom. In par- 
ticnlar, no deterministic mathematical mcdels have been formu- 
lated to predict the behavior of filanentous ozgafisms [Capodaglio 
et al., 1991 ; Belanche et al., 2000]. 

As mentioned above, the performance of the secondary sedi- 
mentation in the WWTP is crucial to the Ol~-afion of activated sludge 
systems. The operation of the secondary settler depends on the stains 
of the sludge, which in mm relies on a variety of parameters such 
as the temperatee, organic loading, itNuent flow rate and floc pro- 
perties. In the present study the solid voltrne index (SVI) is used 
to represent the bu]_~g condition; it ks easily measured mad pro- 
vides a good estimate of the settling properties of a sludge. In ad- 
dition to being routinely collected at the majority of wastewater treat- 
ment plants, the SVI has the advantage that it provides a measure 
of bulking that is not associated with any particuIar species in the 
system. Therefore, the SVI describes the bulking situation rega-d- 
less of the population differentiation and dynm-nics of the system 
biomass [Tcholanoglous and Burton, 1991]. High SVI values are 
indicators of a bulking state and excessive numbers of fflm'nentous 
microbes, which is one of the major upsets of the ASP Ieaditg to 
the deterioration of the purification efficiency. On the other hand, 
the secondary settIing tank itseIf evolves over th-ne as the biomass 
adapts to different conditions. The abiIity to predict the ttrne evolu- 
tion of the SVI value ks very important to the effective operation of 
the settle~: 

The development of a model that can predict with reasonable 
accuracy the dsmamics of the secondary settler, mad that can pre- 
dict the appearance of sludge bulking, ks of great practical n'npor- 
tance. Such a prediction model should acct~ately predict the SVI 
of the mLx~e in the secondary settIer based on the most relevant 
variables of the process, such as flow rates, temperature and biom- 
ass concentration. 

In the present study, system identification and soft, computing 
techniques were ~tsed for the modeling and cIassification of the con- 
tents of the seconclary settling tank. The SVI of the secondary settler 
was forecast by using the recursive least squares (RLS) method. 
We verified that the RLS model para-neters provide a good model- 
ing of the secondary settler by observing the evolution of the RLS 
model tmrameters through a power spectrum analysis. Fmally, we 
proposed a scheme for monitoring the secondary settler by using a 
net~al network (NN) classifier combined with the adaptive pro- 
cessing scheme. The proposed method is shown to be suitable for ap- 
plication to the full-scale WWTR 

METHODS 

In this section we propose a system for monitonng the second- 
ary settler The f~ t  subsection explaius the use of ~ne seiies mod- 
eling to predict the SVI value and power spectrarn analysis to verify 
the classification capability, while the second subsection provides a 
description of the bin classifier that is used to identify the cunent 
state of the settler. The genetic algorithm used to design the NN 

s~ct~-e is intrcx:tuced in the third subsection, and a proposed hierar- 
chical sa-ucmre is described in the fmaI subsection. 
1. Time Series Modeling 

To model SVI of the secondary settle~; we apply the system iden- 
tification methods, where the atmregressive exogenous (ARX) mcd- 
el is used [Ljung, 1987; Ko and Cho, 1996]. A general fon-n of the 
discrete ARX model is as follows. 

y(t)+ a~y(t- 1)+A+a y(t-no) 
=b,u(t- I)+b~u(t- 2)+A+b~u(t- r~)+ e(t) (I) 

where a~ and b~ are coefficients, Ib aldI~ are model orders, y(t) is a 
process output, u(t) is a process input, and e(t) is an unmeasured 
white noise. The objective of the ARX model is to estimate the ad- 
justable l:mamete~ of a~ and bj to minimize the difference between 
the predicted process output and the measured process output Be- 
cause the secon3ary setter is a trine varying process and has inher- 
ently dsmamic charactelistics, it is required to use the adaptive cap- 
ability. For this p~l~se, we use the with recursive Ieast square (RLS) 
algoz-itt~-n that makes the modeling tectmique well-suited for time 
varying environment. 

The RLS algorifl~-n is as follows. 

9(t) =(~(t - 1 ) +K(t)(y(t) -~,(t)) 
9(t) =q~(t)6(t - I) 

K(t) = p(t -I)q~(t) 
~, +q~(t)P(t - 1) q~(t) 
P ( t - I )  P(t-1)q~(t)q~(t)P(t - I) 

P(t) - )~ +q)r(t)P(t - 1 )q>(t) (2) 

where K(t) is a adaptation gain, 9(t) is a l:a-ameter vector, ~(t) is a 
prediction value based on observations at time t - l ,  qa(t) is a regres- 
sion vector, )~ is a forgetting vector, and P(t) is a covmiance matiix 
of esamates. This recursive form is very convement for updating 
the model at each time, so that the model follows the gradual change 
in the chmactezistic of the sedmg process. If the AtEX model pa~-n- 
eters are well tuned, a change in dynamic characteristics of the set- 
tling process wilI cause gradual ctmnge in the paameter vector and 
prediction enor. Therefore, the stares of the settler can be observed 
by a gradual change in the ARX model coefficients. 

In order to see the sensitivity of the AtLX coefliciei~s at each state 
and verify its discrimmant ability, a comtmrlson of the power spec- 
lrmn at each state is requh-ed. The ix)wet specm~-n of a statioimry 
process is defined as the Fourier ~-ar~sfoma of its covariaace fimc- 
tion ~Lj~ag, 1987]. While a deterministic signal can be expressed 
as a mixture of sine and cosine functioi~s at different frequencies, a 
time series response or stochastic system response of a function of 
time does not belong to the class of functions dealt with in the usual 
Fourier ~-amfoma theory. The frequency decomposition of these 
random functions can be obtained by taking the Fourier Transform 
of the auto-covaiance function for which the usual Fouler Iram- 
fon-n can be used. 

For a stochastic process, y(t) can be given by 

y(t)=G(q)u(t) +H(q)e(t) (3) 

where u(t) is a quasi-stationary, deterministic signal with a spec- 
m~n, and e(t) is white noise with a vmiance. Let G(q) and H(q) be 
stable filters. Then y(t) is quasi-stationary and 
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~.(c0)= IG(e'01~O,(c0)+ :~lU(e"01 ~ (4) 

%(c0)=G(eW)*o(C0) (5) 

where (I)y(c0) is a power spectrum of y(t) and qSy,(C0) ks a cross spec- 
~ r n  of y(t) and u(t). It should be noted that these types of spec- 
~um esNnates are itJ:erently smcoth because they a-e obtained based 
on a 1=arameter representation of the system. The result has a physi- 
cal inteqa-etation, where IO(d~)l 2 is the steady-state amplitude of 
the restxx~se of the system to sine wave with a fiequency. The value 
of the speca-aI density of the output is then the product of the power 
IO(e~)l: and the spectral density of the input q),(c0). If  the power 
specm~:: ks separated and has a dissimilarity value at a different 
state, analyzing the power spectrum of the ARX coefficients can 
make the decision on the state of the secondary settlei: 
2. Pattern Classification (Neural Network)  

While differe:~t states a-e not completely se1=~-able in the o:igi- 
:laI input and output dimemional space under a wide range of con- 
ditions, the classes can become separable in the dimensional fea- 
~-e of the ARX pa-ametei~ space. Here, the ARX coefficients are 
used as input features for NN classifier which has the abiIity ofnon- 
Imeaunappmg 

Pattern recognition methods such as multiplayer perceplron (IVILP) 
and radial basis fimction (RBF) have been known as an important 
techilique for the classification problems because they do not re- 
quke accurate process models which a-e often difficult to obtain 
for many biological and chemical processes. And the computing 
abiIity of neural network outpeffom:s the conventio:lal statistical 
approach in many engineering application because of its non-Imear 
~-amfom:ation [Bishop, 1995; Lin and Lee, 1996; Haykin, 1999; 
Himmelblau, 2000]. 

A neural network maps a set of 1wut patterns (e.g., process oper- 
aling conditions) to respective output classes (e.g, catego:ical groups). 
We use an input vector (x) and an output vector (y) to represent the 
input pattern and output class, respectively. The output vector, y, 
from NN is bipolm; with -1 indicating that the input pattern is not 
within the specific, and 1 indicating that it is within a specific class 
(e.g., "- l"=not  in class I; "l"=in class I). The actual output from 
biN is a nume:ical value between -1 and 1, and can be viewed as 
the probability that the input pattem corresponds to a specific class. 
The output veetor (y) co:~tait~s three possible classes: y= {class I, 
class 1I, class 11I}. Note that for every point within the input space, 
there must be only one class specified. It: tiffs paper, we have o:~Iy 
three possible output vectors for ~-aitfing the network, for exanple, 
y= { [1 , -1 , -1 ] ,  [-1, 1 , -1] ,  [ - 1 , - 1 ,  1]}. 

After the calculation of bin output, the values of output nodes 
are passed to the maximum selectoz: The output ::ode selected by 
the maximum selector gives infom:ation on the class that includes 
a current input. It: theory, for an Ivl-class classification problem in 
which the ~aion of the M distinct classes forms the entire input space, 
we need a total of M outputs to represent all possible classification 

xi NN Y2j 
Classifier 

YM,) 

Fig. 2. Block diagram of a pattern classifie,: 
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decisions, as depicted in Fig. 2. It1 this figure the vector x~. denotes 
thejth prototype (i.e., unique samples) of an m-dimensional ran- 
do::: vector x to be classified by a NN classifier It ca :  be expressed 
as folIows: 

If X(5)>yk(x~) fol all k (k= 1, 2 ..... M: kei), thensc g (6) 

where xj islth input vector, y, is the/th output node value of NN 
classifier for input xj, s~ is the/th state of secondary claifiei; and M 
is the number of output nodes. A ~n_ique lmgest output value exists 
with probability 1 when the tmderlying posterior class distributions 
are distract [Haykin, 1999]. 
3. Genetic Algorithm (GA) 

GA is a derivative-fi-ee stochastic opmnization tedmJque m which 
the stochastic search algoz-ittm: ks based on the idea of the p:inciple 
of natures such as natural selection, crossover, and mutation. GA 
has Iagely beet: used in two major parts: optin:ization and machine 
leaz:fing. GA ks a probabilistically guided optimization tectmique. 
Unlike other classical optimization techniques, GA does not rely 
on computing local de:ivatives to guide the search process. One of 
the GA's characteristics is the multiple points search, which discrim- 
inates GA flora other randon: seach methods and helps GA avoid 
getting h-apped in local minm:a. Hence, GA reveals its full power 
when applied to very complex problems [Goldberg, 1989; Wang 
et aI., 1998]. 

Recently, GA has been successffflly applied to WWTP for esti- 
mating water quality model pa-amete:~, water quality para::ete:~ 
m a water quality modeling fiamework, calibrating rainfaII-mnoff 
models, solvmg ground water management problems, and sizing 
water distribution networks [IvlulIigan and Brow:l, 1998]. 

Since the ultimate objective of a pattern classifier is to achieve 
an acceptable rate of correct classificatiorg this criterion is used to 
judge when the variable parameters of NN are optimal. But the size 
of a hidden layer is a fundamental question often raised in the ap- 
plication of NN to real-world l:~-oblems. The exact analysis of this 
issue ks rather difficult because of the complexity of the network 
mapping and the nondeterministic nature of many successfilUy com- 
pleted training procedures. Hence, the size of a hidden layer is usu- 
ally determined experimentally. 

This paper focuses on the application of GA as an important tool 
m the s~ucture and pa:ametez~ learning of NN. S~uctt~-e and pa- 
rameter leaming problems of NN are coded as genes (or chromo- 
somes) and GA is used to search for better solutions (optimal s~uc- 
ture and paranetei~). Here, the saitg of chi-on:oson:es rel:~-ese:~ 
the number of hidden layers of NN. GA typically starts by ran- 
domly genezatitg an initial population of saings. Each suing is a-azs- 
fom:ed into the fitness value to obtain a qua:~t~ive measure. On 
the basis of the fitness value, the shitgs undergo genetic opera- 
tions. The goal of genetic operations is to fred a set of para::etei~ 
that search the opamaI solution to the problem orto reach the limited 
generation. The basic concept betfind tiffs technique comes fi-on: 
that a complete set of weights is coded in a binary or decimal shing, 
which has an associated ~176 indicating its effectiveness [Lin 
and Lee, 1996]. 
4. I-Iierarchical Structm~ 

The system proposed for monitomg the secon&ry settler is com- 
posed of three fundamental parts. Fig. 3 prese:~ a schematic dia- 
gram of the proposed hierarchical s~lcture. First, an adaptive mod- 
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Fig. 3. Schematic diagram office proposed hierarchy structure. 

el ks used to predict the SVI value and provide a classifier with feature 
vectors. This step utilizes the ARX model to predict the SVI value 
in the secondary settler, where the model paraneters are adaptively 
estimated by the RLS method, and the ARX model l:~-ametem are 
~tsed as the Input vector of the NN classifier. Second, an NN clas- 
sifter is designed to identify the cun-ent state of the secondary clas- 
sifter. After the NN is ~ramed, the state class of the settler is chosen 
from the values of the recognized output nodes according to the 
maximum selection rule (i.e., a single value is chosen flora the clas- 
sifter output according to the role ~ minority is subordinated to 
the majority"). Third, the s~ucture of the NN classifier is decided 
from the optimal number of hidden nodes by using a genetic aI- 
gonthm. 

R E S U L T S  A N D  D I S C U S S I O N  

In this paper, we used the indus~-iaI wastewater ~-ea~nent facil- 
ity data of the iron and steel making plant in Korea. It is a general 
activated sludge process that has five aeration bas~s and a second- 
ary settle:: Fig. 4 shows the layout of the WIYTP It has two waste- 
water sources, where one directly comes from a coke maldng plant 
(called BET3) and the other comes fi-om a preaeated wastewater 
of upstream WWTP at other coke making plant (called BET2). The 
coke-oven plant wastewater is produced d~ing the conversion pro- 
cess of coal to coke in the steel making industries. It is ex~-emely 
difficult to tteat the coke wastewater because it is highly polluted 
and most of the chemical oxygen demand (COD) originates from 
large qLantifies of toxic, inhibitory compounds and coal-derived 
liquoi~ (e.g. phenolics, thiocyailate, cyaaides, polyIhydi-ocarbom 
and amnonium). The data set consist of daily mean values fi-om 
January 1, 1997 to December 22, 1999. The data are divided into 
two parts. A ~-aining set consisting of the values during first two 

BET2 I ,[ I I ! , . ~  Final 

0 

I Aeration basin ~ " 

Recycle 
sludge 

Waste 
sludge 

Fig. 4. Plant layout of  WWTP.  

years and a test data set d~ing the remaining one year are used to 
see how well the proposed algorithm works. 

First, the AtLX model s~ucture is as follows. Its inputs are four: 
the infiuent flow rate, infiuent COD, dissolved oxygen (DO) of the 
fmaI aeration basin, and mixed liquor suspended solid (MLSS) in 
the f:lal aeration basin. Output variable is SVI of the settler The 
state of the secondary settler is divided three cIasses (normal, bad 
and bulking state) which are judged by an experienced operator. 
The ARX model is adapted by RLS method with the forgetting fac- 
tor. At present there is no better method available to fimdamentally 
determine the ARX model order A most na~a l  apv-oach to search 
for a suitable AtLX model slruc~-e is simply to test a number of 
different ones and to coml:~-e the resul6ng models. Thne-lagged 
scheme is adopted because the settler is considered as a dynamic 
system (i.e., bacteria do not respond m a detectable manner to in- 
stantaneous inputs of meas~z-able l~-ameters), and therefore a time- 
lagged input scheme for the input parameters is deemed to reflect 
acOaal conditions within the secondary settler. Two days lag is cho- 
sen, which con-espon& to the average hy&aulic retention time of 
the system, that is, the order of each exogenous n-g~ut is 2 and order 
of AR part is 3. The applied ARX model has a following form: 

y(t)+%y(t- 1)+a2y(t- 2)+aay(t- 3 ) 
='c~, ~u~(t- 1)+b~,~u~(t- 2)+'c~, ~u~(t- I)+'c~,~u~(t- 2) 

+ba,,u~(t- 1)+ba,~u~(t- 2)+b,,,u,(t- I)+b,,~u,(t- 2) (7) 

where y(t) is S\q, u~(t) is itfiuent flow :-ate, u2(t) is itfiuent COD, 
u3(t) is DO, and u4(t) is IvILSS. To remove data redundancy, we nor- 
malize the raw ~aining data The RLS method uses the dead-zone 
method to remedy the estimation windup. 

Fig. 5 shows the one-step ahead prediction result of SVI in the 
secondary settler during the test period. The dot point is real value 
and solid Ime is the vediction value. The result during the test per- 
iod confm-ns the good prediction capability of the proposed meth- 
od. In order to see the se~asitivity of the ARX coe~cients at each 
state, the parameter values of each state are shown in Fig. 6. In this 
Figure, the ARX model tx~rarneters have different values accord- 
mg to each state, which meaas that the state decision of the second- 
ary settle: can be achieved by quantit~ively analyzing the ARX 
parameters. To confirm theoretically the difference between the ARX 
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Fig. 5. One-step ahead prediction value of SVI using RLS method. 
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Fig. 6. Sens~v~ of the ARX model parameters at each state. 
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Table 1. Confusion matrix of the test data 
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Predicted 

Normal Bad Bulking 

Actual (Desired) NozTnal 228 9 6 
Bad 36 59 17 
Bulking 0 

operator are used. We have set the mutation rate for 0.01 and cross- 
over rate for 0. 6. GA fro& the opthnaI number of each tfidden node 
quickly, because the search space is small in the applicatior~ The 
number of fn~t and second hidden layers is 7 and 4, respectively. 
In other simulations, IvILP with two hidden layers shows better re- 
suit than that with only one hidden layer. 

In testing mode, the maxinmm value of NN classifier outputs is 
chosen in deteamning the present states. It inclicates what state is 
the current state. The test data has not a bulking state but only the 
nom~al and bad state. Table 1 shows the confusion matrix repre- 
senhng classification results from the test set_ This is a matnx whose 
i by j element inclicates the number of samples that originate fiom 
the/th dLshibution and are classified into thea-th state. The diagonal 
elements are the nvrnbers of samples cIassified correctly, while the 
off-diagotlals are the numbers of misclassified samples. Though 
output values do not completely agree with the conesponding de- 
sired ov~_~, they are reasonable to recognize the present state. From 
the NN classifiez; the classification rate is about over 80.9% on an 

Fig. 7. Power spectrum in each state (a) normal (b) bad (c) bulk- 
ing state. 

parameters in each class, we display the power spec~um analysis 
of the ARX pa-amete~ m the Fig. 7, which shows the valiclity of 
the recognition system of the state m the settler. 

Second, we use an IvILP sh~cture with two hidden layers as an 
NN classifier, where local features are extracted m the first hidden 
layer and global feahores are extracted m the second hidden layer 
[1-Iayld~ 1999]. The number of the hidden layers is decided by the 
hierarchical GA. To speed up haining and stabilize the learning aI- 
goz-ithn, we use the momentum ten-n, adaptive learning rate, nor- 
malized weight updating and batch learning techniques. IvILP is Ira- 
ined by using tt~-ee patterns accorclmg to the state of the secondary 
settler. The number of the ARX parameters, which is used as the 
input variables of IvILP, is elevert And other operating conditions, 
such as toxic occun-ence, microorgamm state and status of aera- 
tion basin can be taken as a&iitional feahores to compensate for sen- 
sitivity of the ARX parameters to the vmiation of operation con- 
ditions. The classification rate for these adclitional features does not 
show any improvement In this paper, for pvrposes of clarity, we 
do not use this additioilaI itffom~ation. The input features are not- 
malized m [-0.9, 0.9] ranges in order to prevent sahoaation of an 
activation fimction. The corresponding target values of ov~ut ncdes 
are set to nonnaI state (0.9, -0.9, -0.9), bad state (-0.9, 0.9, -0.9), 
bulld_ng state (-0.9, -0.9, 0.9) for each state of three classes. In the 
GA application of IvILP structure, the initial population size of par- 
ents is 30 and genez-ation number is 100. Ranked-base selection as 
a selection operator, and mutation and tmiform crossover as a search 

average, even though the settler was run under a wide range of op- 
erating conditions. Because the process has an abrupt load varia- 
tion during the latter part of test set. the misclassification rate was 
higher m this period. 

C O N C L U S I O N  

Recognition of the process state of the seconclary settler enables 
effective decision-making m regard to the operation of the process, 
and consequently enhances the treahnent efficiency. In the present 
study we fommlated a model for the prediction and classification 
of the SVI values m the secondary settler. We verified that the hy- 
bz-id s~ruchoa-e of the Alex model and NN classifier could predict 
the SVI value and classify the current state of the secondary settie~ 
The theoretical analysis revealed a strong con-elation between the 
settler states and the values of the ARX parm-netet~. The proposed 
methcd was shown to be capable of simultaneously predicting the 
SVI value of the secon&ry settler and classifying the current state 
of the secondary settler 
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