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Abstract—In biological wastewater treatment plants the biomass is separated from the treated wastewater in the se-
condary settler; thus, efficient operation of the secondary seftler is crucial to achieving satisfactory effluent quality in
the wastewater treatment process (WWTP). In the present work, system identification and soft-computing techniques
were used to formulate a model for predicting the solid volume index (SVI) and classification of the sludge bulking
phenomenon in the settfler. An adaptive time series model was applied to predict the SVI of the secondary settler; this
model uses the recursive least square (RLS) method to update the model parameters. The method for classifying the
current state of the secondary settler is based on the strong correl ation that was observed between the settler state and
the values of the time seties model parameters, which enabled the time series model parameters to be used as effective
features for monitoring the secondary seftler. To classify the cumrent state of the secondary settler, a neural network
(NN) was used to classify the adaptive time series model parameters, where a hybrid Genetic Algorithm (GA) was
used to decide the number of hidden nodes of the NN classifier. Application of the proposed method to a full-scale
WWTP demonsirated the utility of the method for simultaneously predicting the SVI value of the secondary settler
and classifying the current state of the settler.

Key words: Auto-regressive Exogenous (ARX) Model, Bulking, Genelic Algonithm (GA), Neural Network (NN) Classifier,
Recursive Least Square (RLS) Method, Solid Volume Index (SVI)

INTRODUCTION

Increasingly stringent environmental regulations demand ongo-
ing improvements in the quality of the effluent from wastewder
treatment plants. Achieving better effluent quality requires improved
modeling and control of plant performance. The first step m any
procedure aimed at reducing the pollutant level in effluent from the
biological wastewater treatment process (WWTP) should be to mod-
el and analyze the current state of each unit of the WWTP. The re-
covery of the WWTP from a ‘bad’ state to a ‘normal” state is slow;
hence, good modeling and status classification in the biological pro-
cess are crucial to the process efficiency because they allow cotrec-
tive action to be taken well before the onset of a dengerous situation
[Olsson and Chapman, 1988; Hasselblad et al., 1996; Teppola et
al, 1997, 1999, Lee et al, 1998; Rosen and Olsson, 1998; Van Don-
gen et al., 1998; Bang et al, 2001; Choi et al, 2001; Yoo et al,, 2000,
2001, 2002].

The activated sludge process (ASP) is the most extensively used
process in wastewater treatment plants. In the ASP, wastewater con-
taining organic matter, suspended solids, and nutrients enters an aer-
ated tank where it is mixed with biological floc particles. The mix-
ture 1s held n the tank for a predetenmined contact time, affer which
it is discharged into a seitler that separates the suspended biomass
from the treated water: Most of the biomass is recirculated to the
aeration tank, and a small amount is purged daily {Fig. 1). The ASP
1s a complex biological process that is difficult to fully understand
and therefore difficult to operate and conirol. Both the quantity and
quality of the inflow vary with time. In addition, the system con-
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Fig, 1. A badc activated dudge process with an aerated tank and
a settler.

tains a living catalyst (the microorganisms), and the microorganism
population varies over time both in quantity and in the relative pop-
ulations of different species. Knowledge about the process is scarce
because the few available on-line analyzers are unreliable, and most
existing datarelated to the process is subjective and cannot be numer-
ically quantified. The majority of the problems associated with poor
effluent quality from the ASP result from the nability of the se-
condary seftler to efficiently remove the suspended biomass from
the treated water. When the biomass is heavily colonized by long
filamentous bacdteria, which hold the flocs apart, sludge settling is
hindered and the solid volume index (SVI) increases. This phe-
nomenon is referred to as bulking [Belanche et al., 2000].
Sludge buking is pethaps the most common cause of ASP fail-
ures (i.e., exceeding the pemmitted discharge levels). It has been es-
timated, for example, that over 50% of the treatment plants in the
world regularly experience bukking conditions. Buking slows the
settling in the settler and, as a consequence, solids i these condi-
tions are more likely to escape the separation unit. Recent efforts to
understand the factors that lead to bulking have relied primarily on
experimental observation of the bacterial species involved Uncer-
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tamty regarding the factors that trigger bacterial growth 1s a major
obstacle to the elucidation of the problem. However, the factors caus-
mg the bacterial growth have been established only m a few cases,
and even mn these cases the experimental results are open to con-
tradictory mterpretations. As a result, no models have been estab-
lished for the analysis and prediction of bulkmg conditions. In par-
ticular, no deterministic mathematical models have been formu-
lated to predict the behavior of filamentous orgamsms [Capodaglio
et al, 1991; Belanche et al., 2000].

As mentioned above, the performance of the secondary sedi-
mentation m the WWTP 15 crucial to the operation of activated sludge
systems. The operation of the secondary settler depends on the status
of the sludge, which in tum relies on a vanety of parameters such
as the temperature, orgamc loading, influent flow rate and floc pro-
perties. In the present study the solid volume mndex (SVI) 1s used
to represent the bulking condition; 1t 13 easily measured and pro-
vides a good estimate of the setthng properties of a sludge. In ad-
dition to being routinely collected at the majority of wastewater treat-
ment plants, the SVI has the advantage that it provides a measure
of bulking that 1s not associated with any particular species in the
system. Therefore, the SVI describes the bulkmg situation regard-
less of the population differentiation and dynamics of the system
biomass [Tcholanoglous and Burtor, 1991]. High SVI values are
mdicators of a bulkmg state end excessive numbers of filamentous
microbes, which 1s one of the major upsets of the ASP leading to
the detenioration of the purification efficiency. On the other hand,
the secondary settling tank 1tself evolves over time as the biomass
adapts to different conditions. The ability to predict the time evolu-
tion of the SVI value 1s very important to the effective operation of
the settler.

The development of a model that can predict with reasonable
accuracy the dynamics of the secondary settler, and that can pre-
dict the appearance of sludge bulkmg, 15 of great practical mpor-
tance. Such a prediction model should accurately predict the SVI
of the mixture in the secondary settler based on the most relevant
vaniables of the process, such as flow rates, temperature and biom-
ass concentration.

In the present study, system 1dentification and soft-computing
techriques were used for the modeling and classification of the con-
tents of the secondary settlmg tank. The SVI of the secondary settler
was forecast by using the recursive least squares (RLS) method.
We verified that the RLS model parameters provide a good model-
mg of the secondary settler by observing the evolution of the RLS
model parameters through a power spectrum analysis. Finally, we
proposed a scheme for momtorng the secondary settler by using a
neural network (NN) classifier combmed with the adaptive pro-
cessing scheme. The proposed method 1s shown to be suitable for ap-
plication to the full-scale WWTP.

METHODS

In this section we propose a system for monitoring the second-
ary settler The first subsection explains the use of time series mod-
eling to predict the SVI value and power spectrum analysis to venfy
the classification capability, while the second subsection provides a
description of the NN classifier that 15 used to identify the current
state of the settler The genetic algonthm used to design the NN
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structure 1s mtrochuced m the third subsection, and a proposed huerar-
chical structure 1s described in the final subsection.
1. Time Series Modeling

Tomodel SVI of the secondary settler, we apply the system 1den-
tification methods, where the autoregressive exogenous (ARX) mod-
el 15 used [Ljung, 1987; Ko and Cho, 1996]. A general form of the
discrete ARX model 1s as follows.

y(O)+ay(t-1)+A+a, y(t-n)
=bu(t- D+but-2)+A+b,ult-n)+e) M

where & and b,are coefficients, n, and n, are model orders, y(t) 1s a
process output, u(t) s a process mput, and et) 13 an unmeasured
white nose. The objective of the ARX model 1s to estimate the ad-
Justable parameters of a; and b, to mmumize the difference between
the predicted process output and the measured process output. Be-
cause the secondary seftler 1s a tume varymg process and has mher-
ently dynamic characteristics, 1t 1s required to use the adaptive cap-
ability. For this purpose, we use the with recursive least square (RLS)
algonithm that makes the modeling techimque well-suited for time
varying environment.

The RLS algorithm 1s as follows.

6t =8(t—1) +K(O(y(D) —9(1)
9O =0"(18(t-1)
K(t)=—P t—Do(t
A +Q(OP(t=1)(t)
p(t—1) - L OO P 1)
A+ (HP(E=1)p(t) @
A

P(t)=

where K(t) is a adaptation gain, 6(t) 1s a parameter vector, ¥(t) is a
prediction value based on observations at time t—1, Q(t) 1s a regres-
sion vector, A 1s a forgetting vector, and P(t) is a covariance matrix
of estimates. This recursive form is very convenent for updatng
the model at each time, so that the mode] follows the gradual change
m the characteristic of the setthing process. If the ARX model param-
eters are well tuned, a change m dynamic characteristics of the set-
tling process will cause gracdual change m the parameter vector and
prediction error. Therefore, the status of the settler can be observed
by a gradual change in the ARX model coefficients.

In order to see the sensitivity of the ARX coefficients at each state
and verify its discnminant ability, a comparison of the power spec-
trum at each state 1s requured. The power spectrum of a stationary
process 1s defined as the Fourter transform of its covariance func-
tion [Ljung, 1987]. While a deterministic signal can be expressed
as a mixture of sme and cosine functions at different frequencies, a
time series response or stochastic system response of a function of
time does not belong to the class of functions dealt with m the usual
Fourter transform theory. The frequency decomposition of these
random functions can be obtamed by teking the Founer Transform
of the auto-covariance function for which the usual Fourter trans-
form can be used.

For a stochastic process, y(t) can be given by

yO=Glgu®+H(qe® 3

where u(t) 1s a quasi-stationary, deterministic signal with a spec-
trum, and e(t) 13 white noise with a variance. Let G(q) and H(q) be
stable filters. Then y(t) is quasi-stationary and



Adaptive Modeling and Classification of the Secondary Settling Tank 379

©,(@)=IG( )P, (@)+cHE)P @
&, (@)=G(e")P,(®) &)

where @(®) is a power spectrum of y(t) and D,(®) is a cross spec-
trum of y(t) and u(t). It should be noted that these types of spec-
trum estumates are mherently smooth because they are obtaned based
on a perameter representation of the system. The result has a physi-
cal interpretation, where |G(e™) is the steady-state amplitude of
the response of the system to sine wave with a frequency. The value
of the spectral density of the output 1s then the product of the power
IG(e™)]* and the spectral density of the mput ®,(@). If the power
spectrum 13 separated and has a dissimilarity value at a different
state, analyzing the power spectrum of the ARX coefficients can
make the decision on the state of the secondary settler.

2. Pattern Classification (Neural Network)

While different states are not completely separable m the origi-
nal mput and output dimensional space under a wide range of con-
ditions, the classes can become separable m the dimensional fea-
ture of the ARX parameters space. Here, the ARX coefficients are
used as mput features for NN classifier which has the ability of non-
linear mapping.

Pattern recogrution methods such as multiplayer perceptron (MILP)
and radial basis function (RBF) have been known as an important
techruque for the classification problems because they do not re-
quire accurate process models which are often difficult to obtain
for many biological and chemical processes. And the computing
ability of neural network outperforms the conventional statistical
approach in many engineering application because of its non-linear
transformation [Bishop, 1995; Lin and Lee, 1996, Haykin, 1999,
Hmmelblau, 2000].

A neural network maps a set of input pattemns (e.g., process oper-
atmg conditions) to respective output classes (e.g., categorical groups).
We use an mput vector (x) and an output vector (y) to represent the
mput pattern and output class, respectively. The output vector, y,
from NN 15 bipolar, with =1 mdicating that the mput pattern 1s not
within the specific, and 1 indicating that 1t 1s within a specific class
{e.g., “—17=not m class I; “1”=m class I). The actual output from
NN 1s a mumerical value between —1 and 1, and can be viewed as
the probability that the nput pattern corresponds to a specific class.
The output vector (y) contams three possible classes: y={class I,
class II, class IIT}. Note that for every pomt withn the mput space,
there must be only one class specified. In this paper, we have only
three possible output vectors for trammg the network, for example,
y={1,-1,-1], [-1,1,-1], [-1,-1, 1]}.

After the calculation of NN output, the values of output nodes
are passed to the maxmmum selector. The output node selected by
the maxmmum selector gives information on the class that mcludes
a current mput. In theory, for an M-class classification problem mn
which the urnon of the M distmct classes forms the entire mput space,
we need a total of M outputs to represent all possible classification
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Fig. 2. Block diagram of a pattern classifier.

decisions, as depicted m Fig. 2. In this figure the vector x; denotes
the jth prototype (1e., unique samples) of an »-dimensional ran-
dom vector x to be classified by a NN classifier: It can be expressed
as follows:

Ifyx)>y ) forall k k=1,2, ..., M: k=1), thenx e 5 (©)

where x; 18 jth mput vector, y, 1s the ith output node value of NN
classifier for input x,, s, 1s the #th state of secondary clarifier, and M
1s the number of output nodes. A unque largest output value exists
with probability 1 when the underlymg posterior class distributions
are distinct [Haykin, 1999].

3. Genetic Algorithm (GA)

GA 15 a denivative-free stochastic optimization technique m which
the stochastic search algorithm 1s based on the idea of the prmeiple
of natures such as natural selection, crossover, and mutation. GA
has largely been used m two major parts: optimization and machme
learnmg. GA 15 a probabilistically guided optimization techmque.
Unlike other classical optimization techmiques, GA does not rely
on computing local dervatives to guide the search process. One of
the GA’s charactenistics is the multiple points search, which discrim-
mates GA from other random search methods and helps GA avoid
gettmg trapped m local minma. Hence, GA reveals 1ts full power
when applied to very complex problems [Goldberg, 1989, Wang
etal, 1998].

Recently, GA has been successfully applhed to WWTP for est-
mating water quality model parameters, water quality parameters
m a water quality modelmg framework, cahbrating ramfall-runoff
models, solving ground water management problems, and sizing
water distribution networks [Mulligan and Brown, 1998].

Smce the ultimate objective of a pattern classifier 1 to achieve
an acceptable rate of correct classification, this criterion 1s used to
Judge when the vanable parameters of NN are optimal. But the size
of a ludden layer is a fundamental question often raised m the ap-
plication of NN to real-world problems. The exact analysis of this
1ssue 18 rather difficult because of the complexity of the network
mapping and the nondetermirustic nature of many successfully com-
pleted traming procedures. Hence, the size of a ludden layer 1s usu-
ally determined experimentally.

Thus paper focuses on the application of GA as an important tool
m the structure and parameters learning of NN. Structure and pa-
rameter learning problems of NN are coded as genes (or chromo-
somes) and GA 1s used to search for better solutions (optimal struc-
ture and parameters). Here, the string of chromosomes represents
the mumber of hidden layers of NN. GA typically starts by ren-
domly generatmg an imtial population of strings. Bach strmg 1s trens-
formed mto the fitness value to obtamn a quantitative measure. On
the basis of the fitness value, the strmgs undergo genetic opera-
tions. The goal of genetic operations 1s to find a set of parameters
that search the optimal solution to the problem or to reach the limited
generation. The basic concept behind thus technique comes from
that a complete set of weights 15 coded m a binary or decimal strng,
which has an associated “fitness” indicating its effectiveness [Lm
and Lee, 1996].

4. Hierarchical Structure

The system proposed for monitormg the secondary settler 13 com-
posed of three fundamental parts. Fig. 3 presents a schematic dia-
gram of the proposed hierarchical structure. First, an adaptive mod-
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Fig. 3. Schematic diagram of the proposed hierarchy structure.

el 1s used to predict the SVI value and provide a classifier with feature
vectors. This step utilizes the ARX model to predict the SVI value
m the secondary settler, where the model parameters are adaptively
estimated by the RLS method, and the ARX model parameters are
used as the mput vector of the NN classifier. Second, an NN clas-
sifier 13 designed to identify the current state of the secondary clas-
sifier. After the NN is trained, the state class of the settler 1s chosen
from the values of the recogrized output nodes according to the
maximum selection rule (Le., a single value 1s chosen from the clas-
sifier output according to the rule “the minority 1s subordinated to
the majority”). Third, the structure of the NN classifier 15 decided
from the optimal number of lidden nodes by using a genetic al-
gorithm.

RESULTS AND DISCUSSION

In thus paper, we used the industrial wastewater treatment facil-
ity data of the ron and steel makmg plant m Korea. It 1s a general
activated sludge process that has five aeration basins and a second-
ary settler. Fig. 4 shows the layout of the WWTP. It has two waste-
water sources, where one directly comes from a coke malking plant
(called BET3) and the other comes from a pretreated wastewater
of upstream WWTP at other coke making plant (called BET2). The
coke-oven plant wastewater 15 produced durmg the conversion pro-
cess of coal to coke m the steel makmg mdustries. It 15 extremely
difficult to treat the coke wastewater because it is hughly polluted
and most of the chemical oxygen demand (COD) origmates from
large quantities of toxic, mhibitory compounds and coal-denived
liquors (e.g. phenolics, thiocyanate, cyamides, poly-hydrocarbons
and ammonium). The data set consist of daily mean values from
January 1, 1997 to December 22, 1999. The data are divided into
two parts. A traming set consisting of the values durmg furst two
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Fig. 4. Plant layout of WWTP.
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years and a test data set during the remaming one year are used to
see how well the proposed algorithm works.

First, the ARX model structure 15 as follows. Its mputs are four:
the nfluent flow rate, mfluent COD, dissolved oxygen (DO) of the
final aeration basin, and mixed hquor suspended solid (MLSS) m
the fmal aeration basm. Output variable 15 SVI of the settler The
state of the secondery settler 1s divided three classes (normal, bad
and bulking state) which are judged by an experienced operator.
The ARX model 15 adapted by RLS method with the forgetting fac-
tor. At presert there is no better method available to fundamentally
determine the ARX model order A most natural approach to search
for a suitable ARX model structure 1s sumply to test a number of
different ones and to compere the resulting models. Tune-lagged
scheme 15 adopted because the settler 15 considered as a dynamic
system (L., bacteria do not respond in a detectable manner to m-
stantaneous mputs of measurable parameters), and therefore a tume-
lagged mput scheme for the mput parameters 1s deemed to reflect
actual conditions withn the secondary settler. Two days lag is cho-
sen, which corresponds to the average hydraulic retention time of
the system, that 1s, the order of each exogenous mput is 2 and order
of AR part 1s 3. The applied AR model has a following form:

y(O+ay(t-1D+ayt-2)+ayt-3)
=by, = D+b, pu = 2+b, u(t- Db, (t-2)
+b3, 1u'3(t_ 1)+b3,2uz(t_ 2)+b4, 1ua(t_ 1)+b4, 2u4(t_ 2) (7)

where y(t) 1 SV, u(t) 13 mfluent flow rate, u,(t) 13 influent COD,
w(t) 1s DO, and u,(t) 1s MLSS. To remove data redundancy, we nor-
malize the raw traimng data. The RLS method uses the dead-zone
method to remedy the estimation windup.

Fig. 5 shows the one-step ahead prediction result of SVI m the
secondary settler during the test period. The dot point is real value
and solid Iine 15 the prediction value. The result durmg the test per-
1od confirms the good prediction capability of the proposed meth-
od. In order to see the sensitivity of the ARX coefficients at each
state, the parameter values of each state are shown m Fig. 6. In this
Figure, the ARX model parameters have different values accord-
mg to each state, which means that the state decision of the second-
ary settler can be achieved by quantitatively analyzing the ARK
parameters. To confirm theoretically the difference between the ARX
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Fig. 5. One-step ahead prediction value of SVI using RLS method.
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parameters m each class, we display the power spectrum analysis
of the ARX parameters i the Fig. 7, which shows the validity of
the recognition system of the state mn the settler.

Second, we use an MLP structure with two hidden layers as an
NN classifier, where local features are extracted in the first ludden
layer and global features are extracted in the second hudden layer
[Haykin, 1999]. The number of the hidden layers 1s decided by the
hierarchical GA. To speed up traiming and stabilize the learning al-
gorithm, we use the momentum term, adaptive learming rate, nor-
malized weight updating and batch learning techniques. MLP is tra-
med by using three patterns according to the state of the secondary
settler. The number of the ARX parameters, which 1s used as the
mput vaniables of MLP, is elevenn And other operating conditions,
such as toxic occurrence, microorgarusim state and status of aera-
tion basm can be taken as additional features to compensate for sen-
sitivity of the ARX parameters to the varation of operation con-
ditions. The classification rate for these additional features does not
show any mprovement In this paper, for purposes of clanty, we
do not use this additional mformation. The wput features are nor-
malized in [0, 0.9] ranges m order to prevent saturation of an
activation function. The corresponding target values of output nodes
are set to normal state (0.9, —0.9, —0.9), bad state (-0.9, 0.9, —0.9),
bulking state (0.9, —0.9, 0.9) for each state of three classes. In the
GA application of MLP structure, the mitial population size of par-
ents 1s 30 and generation number 15 100. Ranked-base selection as
a selection operator, and mutation and umform crossover as a seerch

Table 1. Confusion matrix of the test data

Predicted
Normal Bad Bulking
Actual (Desired)  Normal 228 9 6
Bad 36 59 17
Bulking 0

operator are used. We have set the mutation rate for 0.01 and cross-
over rate for 0.6. GA finds the optumal number of each ludden node
quickly, because the search space 15 small mn the application. The
number of first and second udden layers is 7 and 4, respectively.
In other simulations, MLP with two hidden layers shows better re-
sult than that with only one hidden layer.

In testing mode, the maximum value of NN classifier outputs 1s
chosen m determining the present states. It indicates what state 1s
the current state. The test data has not a bulking state but only the
normal and bad state. Table 1 shows the confusion matrix repre-
senting classification results from the test set. This is a matrix whose
i by j element mdicates the mumber of samples that originate from
the #h distribution and are classified mto the jth state. The diagonal
elements are the numbers of samples classified correctly, while the
off-diagonals are the numbers of musclassified samples. Though
output values do not completely agree with the correspondmg de-
sired outputs, they are reasonable to recognize the present state. From
the NN classifier, the classification rate 1s about over 80.9% on an
average, even though the settler was run under a wide range of op-
eratng conditions. Because the process has an abrupt load vana-
tion durmg the latter part of test set, the misclassification rate was
higher mn this period.

CONCLUSION

Recognition of the process state of the secondary settler enables
effective decision-making in regard to the operation of the process,
and consequently enhances the treatment efficiency. In the present
study we formulated a model for the prediction and classification
of the SVI values in the secondary settler. We verified that the hy-
brid structure of the ARK model and NN classifier could predict
the SVI value and classify the current state of the secondary settler
The theoretical analysis revealed a strong correlation between the
settler states and the values of the ARX parameters. The proposed
method was shown to be capable of simultaneously predictng the
SVI value of the secondary settler and classifying the current state
of the secondary settler
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